Close Menu
    What's Hot

    Alivio de Mazón: Abascal da a Feijóo sus condiciones para invertir en Pérez Llorca: llama al PP a construir “presas y diques” en la Comunidad Valenciana | España

    noviembre 12, 2025

    Sánchez toma medidas contra las privatizaciones del PP: «Han convertido Madrid en un casino donde siempre gana Quirón» | España

    noviembre 12, 2025

    Detenido en Murcia un integrante de la banda del Tren de Aragua que huyó de Chile | España

    noviembre 12, 2025
    Facebook X (Twitter) Instagram
    Notas de Prensa
    • Inicio
    • Ciencia
    • Cultura
    • Deportes
    • Economìa
    • Find
    • Internacional
    • Regiones
      • Andalucìa
      • Cataluña
      • Comunidad Valenciana
      • Galicia
      • Madrid
      • Paìs Vasco
    Facebook X (Twitter) Instagram
    Notas de Prensa
    Portada » La paradoja de las ánforas | el juego de la ciencia
    Ciencia

    La paradoja de las ánforas | el juego de la ciencia

    Giorgio Mendoza OzunaBy Giorgio Mendoza Ozunaoctubre 17, 2025No hay comentarios3 Mins Read
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Share
    Facebook Twitter LinkedIn Pinterest Email


    La semana pasada vimos una solución al problema de unir una cuadrícula de puntos de 4×4 con solo seis líneas rectas sin levantar el lápiz del papel ni cruzar la misma línea dos veces. Aquí hay otro, elegantemente simétrico y cíclico:

    En el caso de la cuadrícula 3×3, la solución es clara, pero no sé cuántas soluciones diferentes hay para la cuadrícula 4×4 (al menos tres, pero tal vez más), y presumiblemente a medida que aumenta la puntuación, el número de soluciones diferentes también aumentará.

    Cuando se trata de tapas de alcantarilla, hay al menos tres razones de peso (nunca mejor dicho) por las que es preferible (aunque no imprescindible) que sean redondas. Al ser redondos se pueden mover mediante ruedas, lo que resulta muy práctico dado su gran peso. Además, encajan en su orificio en cualquier posición, mientras que las formas cuadradas u otras requerirían girarlas hasta que coincidan exactamente con el orificio. Y lo que no es menos importante: al ser redondos, no pueden caer por su propio agujero, lo que sería relativamente fácil en los cuadrados cuadrados, ya que la diagonal de un cuadrado es casi una vez y media la longitud de su lado. Lo que plantea la pregunta: ¿Existe otra forma posible de la tapa de alcantarilla que no le permita caer por su propio agujero, o sólo la tapa redonda tiene esta propiedad?

    ¿Y por qué podemos estar seguros de que las hojas de sable son arcos circulares? Al menos con las katanas con vaina este debe ser el caso, ya que la línea recta y la circunferencia son las únicas líneas que pueden deslizarse sobre sí mismas (bueno, en realidad hay una tercera, ¿qué es esa?). Si la curvatura de los sables no fuera un arco circunferencial, no podrían insertarse en sus vainas.

    La razón importante de la abundancia de triángulos en todo tipo de estructuras es que es el único polígono que está determinado por la longitud de sus lados. Si nos dicen que los lados de un cuadrilátero miden todos 10 cm, puede ser un cuadrado o un rombo (o más bien un número infinito de ellos). En cambio, si nos dicen que los lados de un triángulo miden 10, 20 y 30 cm, sabemos que sólo puede ser un triángulo rectángulo. Y pasando de la geometría a la física, esto significa que un triángulo no es deformable (a menos que lo rompamos), mientras que, por ejemplo, un cuadrado con vértices articulados es fácilmente deformable. En consecuencia, las estructuras formadas por módulos o células triangulares son más estables que las basadas en cuadrados, rectángulos u otros polígonos.

    Hablando de cuadrados y rectángulos, existen diversas razones por las que aparecen en abundancia en todo tipo de trabajo y productos humanos (no así en la naturaleza). Por un lado, la atracción de la gravedad nos impone el binomio horizontal-vertical: nuestro peso vertical nos permite movernos preferentemente sobre superficies horizontales para lograr estabilidad (por eso dice Le Corbusier que el ángulo recto es nuestro pacto de solidaridad con la naturaleza). Por otro lado, los objetos ortoédricos (cajas, ladrillos, tejas…) se pueden apilar y montar de forma más sencilla y ahorrando espacio. Con ladrillos y tatamis, el hecho de que un lado del rectángulo sea el doble de largo que el otro facilita la construcción de estructuras compactas y estables.

    Sin embargo, las ánforas de los antiguos romanos, maestros ingenieros y eficientes diseñadores industriales de vanguardia, eran vasijas puntiagudas que no podían sostenerse sobre su propia base y tenían una relación superficie-volumen desfavorable. ¿Porque?

    ánforas Ciencia Juego las paradoja
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Giorgio Mendoza Ozuna

    Related Posts

    Sánchez toma medidas contra las privatizaciones del PP: «Han convertido Madrid en un casino donde siempre gana Quirón» | España

    noviembre 12, 2025

    El PP atiza las contradicciones del Gobierno con una enmienda para aplazar el cierre de Almaraz | España

    noviembre 11, 2025

    Qué periodismo está en juego en el juicio al Fiscal General | España

    noviembre 11, 2025
    Publicaciones Recientes

    Alivio de Mazón: Abascal da a Feijóo sus condiciones para invertir en Pérez Llorca: llama al PP a construir “presas y diques” en la Comunidad Valenciana | España

    noviembre 12, 2025

    Sánchez toma medidas contra las privatizaciones del PP: «Han convertido Madrid en un casino donde siempre gana Quirón» | España

    noviembre 12, 2025

    Detenido en Murcia un integrante de la banda del Tren de Aragua que huyó de Chile | España

    noviembre 12, 2025

    El rey destaca a Xi Jinping la “sólida relación” entre España y China | España

    noviembre 12, 2025
    Publicidad
    Demo

    Your source for the serious news. This demo is crafted specifically to exhibit the use of the theme as a news site. Visit our main page for more demos.

    We're social. Connect with us:

    Facebook X (Twitter) Instagram Pinterest YouTube

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    Facebook X (Twitter) Instagram Pinterest
    • Inicio
    • Polìtica de Privacidad
    • Contacto
    • Política de cookies (UE)
    © 2025 ThemeSphere. Designed by ThemeSphere.

    Type above and press Enter to search. Press Esc to cancel.